Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus.

نویسندگان

  • Jakob Nielsen
  • Tae-Hwan Kwon
  • Jeppe Praetorius
  • Jørgen Frøkiaer
  • Mark A Knepper
  • Søren Nielsen
چکیده

Vasopressin and aldosterone are essential hormones in the regulation of water and sodium balance. Aldosterone regulates sodium reabsorption, although synergistic effects on collecting duct water permeability have been shown. We investigated the effects of 7-day aldosterone infusion or oral spironolactone treatment on water balance and aquaporin (AQP) 2 expression in rats with 21 days of lithium-induced nephrogenic diabetes insipidus (Li-NDI). In rats with Li-NDI, aldosterone markedly increased (271 +/- 14 ml/24 h), whereas spironolactone decreased (74 +/- 11 ml/24 h) urine production compared with rats treated with lithium only (120 +/- 11 ml/24 h). Aldosterone increased free-water clearance and creatinine clearance, whereas spironolactone caused a decreased creatinine clearance but unchanged free-water clearance. Immunoblotting showed unchanged AQP2 expression in cortex/outer stripe of the outer medulla and inner medulla. In the inner stripe of the outer medulla aldosterone caused a decreased AQP2 expression, whereas spironolactone caused an increase compared with rats treated with lithium only. Semiquantitative confocal immunofluorescence microscopy of AQP2 immunolabeling showed reduced AQP2 expression in the apical plasma membrane domain in connecting tubule (CNT) and initial cortical collecting ducts (iCCD) in response to aldosterone-treated rats compared with rats treated with lithium only. Spironolactone significantly increased apical AQP2 expression in the iCCD compared with rats treated with lithium only. We also tested whether similar changes could be observed in vasopressin-deficient BB rats and found similar changes in urine production and subcellular AQP2 expression in the CNT and iCCD in response to aldosterone and spironolactone. This study shows that aldosterone treatment perturbs diabetes insipidus and is associated with AQP2 redistribution in CNT and iCCD likely mediated by the spironolactone-sensitive mineralocorticoid receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of AQP2 in Collecting Duct : An emphasis on the Effects of Angiotensin II or Aldosterone

Vasopressin, angiotensin II (AngII), and aldosterone are essential hormones in the regulation of body fluid homeostatsis. We examined the effects of AngII or aldosterone on the regulation of body water balance. We demonstrated that 1) short-term treatment with AngII in the primary cultured inner medullary collecting duct cells played a role in the regulation of AQP2 targeting to the plasma memb...

متن کامل

Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney.

The purpose of the present studies was to determine the effects of high-dose aldosterone and dDAVP treatment on renal aquaporin-2 (AQP2) regulation and urinary concentration. Rats were treated for 6 days with either vehicle (CON; n = 8), dDAVP (0.5 ng/h, dDAVP, n = 10), aldosterone (Aldo, 150 microg/day, n = 10) or combined dDAVP and aldosterone treatment (dDAVP+Aldo, n = 10) and had free acces...

متن کامل

Novel activators of aquaporin 2 membrane expression for the treatment of nephrogenic diabetes insipidus: less is more. Focus on "High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration".

NEPHROGENIC DIABETES INSIPIDUS (NDI) is a disease characterized by the production of very large quantities of dilute urine resulting from an inability of the kidney to respond to vasopressin (9). In the US, approximately 41,000 people are diagnosed with NDI each year. NDI can result from either congenital or acquired etiologies. Mutations in the type 2 vasopressin receptor (V2R) occur in 90% of...

متن کامل

Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway

Heritable nephrogenic diabetes insipidus (NDI) is characterized by defective urine concentration mechanisms in the kidney, which are mainly caused by loss-of-function mutations in the vasopressin type 2 receptor. For the treatment of heritable NDI, novel strategies that bypass the defective vasopressin type 2 receptor are required to activate the aquaporin-2 (AQP2) water channel. Here we show t...

متن کامل

Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity.

In antidiuresis, vasopressin (AVP) occupation of V2 receptors in renal collecting ducts activates adenylyl cyclase, resulting in increased intracellular cAMP levels, which activates protein kinase A (PKA). PKA phosphorylates both the cAMP responsive element binding protein, which induces aquaporin-2 (AQP2) transcription, and AQP2, which then is translocated to the apical membrane, allowing urin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 290 2  شماره 

صفحات  -

تاریخ انتشار 2006